References

Aoun, J., N, Hornstein & D, Sportiche (1981) Some aspects of wide

scope quantification. Journal of Linguistic Re-
search 1.3

Bach, E. (1982) Purpose clauses and Control. Jacobson f Pullum

(eds.) The nature of syntactic representati
Dordrecht: Peidel : =

NSRRI (lFa’c[) Lectures on government and Lindino, Dordrecht:
uri ) .

-

(1982) some concepts and co
S nsequences of the th
of government and bindina, Cambridge: FﬁT‘Presseory

Dowty, D. (1982) Grammatical relations and Montague Grammar

Jacobson & Pullum (eds.) The nature i
2ds ., of
representation, NDordrecht, Reidel syntectle

Faraci, R. (1974) Aspects of the theor

of infiniti
Ehrasqi, PR D.THIT Y tnfinitive and fﬂ;‘

Huang, C.-T. J, (1982) Logical relations in Chinese and the theory

of grammar.” Ph DT MIT

Jones, C. (1984) linder Control: Where i
s ) : ere is the controlled ?
Chicago Linguistic Society, 20 ed element:

{in progress) Syntax and semanti j
> S ntics of ad i-
cates, PH.D.: UMass/Amherst dunct pred]

Kirkpatrick, C. (1982) The transitiv
; : A e purpose cla j ;
Texas Linguistic Forum, 19 p use in English.

Lasnik, H, & M, Saito (1984) On the definiti

0 ’84) on of -
ment. Linguistic Inquiry, 15 proper govern

Longobardi, G. (1983) Connectedness and island constraints
UMass/Amher§t Linguistics Colloquium, to appeér in
Levels of Linguistic Pepresentation, Dordrecht: Foris

Pesetsky, D. (1982) Paths and cateqgories, Ph.D.: MIT

Williams, E. (1983) Against small clauses. Linguistic Inquirv, 14.2

in WeeFL

3
oA
&;ﬁ:ﬁ%ﬁg Rl

.

3

149

Determiners and the Togical Expressive Power
of Natural Language
Edward L. Keenan*
Lawrence 8. Moss

0. Notional and Notational Preliminarics

We may consider that a major function of natural language is to cnable us to raisc questions
and make assertions about the world. 1t is natural then to consider the precise semantic
contribution to these assertions made by the various sorts of expressions a natural language
provides. llere we are concerned with the expressive contribution of English Determiners
(dets) and with compairing the expressive nature of dets with that of other categories.

We shall formutate our concerns within the modet theoretic approach to Generalized
Quantificrs expressed in various ways in Barwise and Cooper (1981), van Benthem (1982),
Keenan (1981), Kecnan and Maoss (1984), Keenan and Stavi (1981), Linstrdm (1966), ‘Thijsse
(1982). Westerstalil (1982), and Zwarts (1982).

On most of these approaches an extensional model for English is given by a non-empty
set IF of cntitics.  And an cxtensional properfy is just a sct of entities. ‘The sct P of all
propettics of the madel is the denotation set for conunon noun phrases (cNr's). In gencral,
given a model E, we use D to denote the set of logically possible denotations (relative to 1)
ol cxpressions of category C.

Proper nouns (e.g. John) denote sets of propertics called individuals, where a sct 1 of
propertics is an individual iff for some e€ B, 1= {q€ P: ¢€ q}. To say that an individual 1
“has” some propeity q is just to say that g€ 1. We commonly use the symbol n to refer to the
number of individuals of a model, and we use Iq] for the nunber of individuals that have q.
We nse | for that property which all individuals have. And where p and g are properties, we
use (pAq) for the property of being both a p and a q, that is, the property an individual has
iff e has p, and he also has q.

We use P'* 1o denote the set of all sets of propertics. So cach individual I is an clement of
P and in fact, P* is the denotation set for full noun phrases (N's). Finally we use Fpeyp for
the set of functions from P into P*. So this sct provides the sct of logically possible
denotations for (one place) deots.

(We refer the reader to Keenan (1982) for a semantics cquivalent to the above i which
there is no I, P is a primitive, and individuals are defined directly as subscts of P satisfying
certain conditions. On all views P is isomorphic to the power set of the sct of individuals.)

1. Determiners and the Conservativity Constraint

We treat one place dets (ety’s) as expressions which combine with one NP to form an NP,
They include expiessions such as every, no student’s, more of John's than of Mary’s, at least
fwo bt not more than ten, cte. We refer the reader to Keenan and Stavi (K&S) for a copious
list of Dety’s in nglish.
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Scmantically Dety's arc interpreted by fuctions from P into P*. Eatlier work, most
exhaustively in K&S, established that in gencral the funcitons which can interpret elements
of Dety arc conservative, where:

Defl: A funciton f from P into P* is conservative iff for all pge P, p€ flg) iff
(PAQ)E Rq)

So to say that f is conscrvative is to say that F q's are p's iff f ¢'s are both q's and p's. Eg.
cvery student is a vegetarian iff cvery student is both a student and a vegetarian. We note
that the functions which can interpret “non-logical” dets such as John's and more male than
Semale (as in more male than female students failed the exam) as well as “logical™ dcts are
conscrvative.

2. Generalizing Determiners

The initial questions of expressive power we consider concern the relative expressive power
of distinct subclasses of dets, We shall first extend the class of dets considered and then
define the subclasses of interest.

We may think of k-place dets, Dety's, as expressions which combine directly with k ©NI's
to form an Ne. Phey will be interpreted by functions front the set P% of k-tuples of propertics
into I'*. Keenan and Moss (K&M) give several reasons for treating the itaticized expressions
in (1) below as Dety's:

(1) a. more students than teachers
h. every author and critic

c. Juln's brown cats and dogs

[N

. Jewer French workers than students
¢. the 27 students and teachers

FFor example we want the two CNP's on the samic level of structitre so that they may both be
undet the scope of the adjectives in (1e) and (1d): equally they behave in similar ways with
regard to number marking and the role they play in selectional restrictions. FFurther we can
naturally represent the ambiguity in (1) by treating author and critic as a conjunction of
CNI's which combine with the Dety every, on the one hand, and by veating every..and... as a
Dety which combines dircetly with (author, Critic) on the other hand.  Additional sotts of
reasons are given for treating more.., than... (and other numerical comparatives such as not
more than twice as many...as...) as a Dety (see also Napoli 1983). One such reason is given in
Theorem 1 below, which uses the interpretation of ntore... than... given in Def 2:

Def2:  moresthant = {q: [sAq] > tAql}

Su q is a property which more students than teachers have iff the number of students (s) with
q is greater than the number of teachers (1) with q.

Theorem 1: Inany model with at feast two individuals the range of more . than,.. has
larger cardinality than P itselt. Flence, it cannot also be the range of any
onc phice function (conservative or not) on P,
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The theorem guarantecs that wore... than... cannot be paraphrased by any Dety and thus
suggests that Dety’s provide a non-climinable part of the expressive apparatus of natural
language. o

k-place det denotations are also conservative, as per Def 3 below which is justified by
Theorem 2:

Theorem 2 A function f from P into P* is conservative iff for all py, py, and g€ P, if
piAa = pyAq then py€ fly), iff p,€ Rq).

Theorem 2 says that the one place conservative functions arc just those which cannot
discriminate belween propertics py, pa which have the same meet with their argument q.

Generalizing below, we use § as-a variable ranging over k-tuples of propertics, the ith
clement of which is denoted g

Def3: A function f fiom P fnto P* is conservative iff for all p1.p2E€ P and all g& I’k. if
mAG = ppAgjfori=1.2,..% then p € Q) if p€ [q)

So the k-place conscrvalive functions are just those which cannot distinguish between
propertics py, py having the same meet with cach argument g;.

We usc CONSy for the sctof k-place conservative functions and CONS for those functions
in CONSy for some k.

3. Subicategories of Determiners

We shall here semantically subcategorize dets according as the functions which interpret
them satisfy one or another condition. Specifically we shall distinguish “logical” dets such as
every, all but two, more than ten, more...than..., cte. From “non-togical” or “real world™ dets
such as John's, more Frenche than British..., all..but John, cte. And sccondly, among the
logicat dets we shall distinguish cardinal dets from non-cardinal onces.

Informally a function from P into P* will be called a cardinal function just in case
whether it puts o property tin the set it assocates with q is determined by how many
individuat g's have U For exaunple the Tunctions which interpret more than ten, between five
and ten, and infinitely many are obviously cardinal functions, since if we know how many t's
are 's we know whether infinitely many are, whether between five and ten are, ctc.,

Generalizing 1o k-place functions f, we say that fis a cardinal function just in case
whether it puts tin the set it associates with a k-tuple § of propertics is determined by how
many individual ;s we Us, for cach i between Land k. For example, if we know how many
qi's e Us and how nany y's are Cs then we know whether tis a property that more gy's
than «;'s have, so the funciton which interprets more...than... is a two place cardinal function.
I‘or the record:

Defd: A function f from pk into P* is a cardinal function iff for all st& P and all
k-tuples p, @ in pX, il [sApi] = tAqil i=1.2,..% then s€ () iff e q)

cariy will denote the set of k-place cardinal functions and CARD the set of functions which
are in CARDy for some k. We note that for all k, CARDy is a proper subsct of CONSy and that
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CARD is a proper subsct of CONS. So all (k-place) cardinal functions are (k-place)
conservative functions. Finally of course we define a k-place det 1o be a cardinal det justin
case its denotation always lies in CARDy.

Turning now to the larger class of logical dets, we shall find a property common to the
denotations of those dets intuitively judged to be “logical” and then for cach k, we define
LOG to be the sct of functions from pk into P* which have this property.

The intuition behind the definition of LOGy is exemplified by the difference in truth
conditions between (2a,b) on the one hand and (Zg) on the other:

(2) a. Exactly onc house is white.
b. Every house is white,
¢. John's house is white.

The tuth (or falsity) of (2a) and (2b) is determined once we have specificd which objects
have the house property and which objects have the property of being white,  But to know
whether (2¢) is true we must in addition know which individuat John is and which objects he
“has™. Thus, John's carries real world information in a wary in which neither exactly one nor
every does. More specifically, to say in a given state of alfairs just which function fiom P into
P* interprets John's we must be able to discriminate one individuat from another. But to say
which functions interpret logical dets such as exactly one and every we do not have to
discriminate onc individual from another in the sense of knowing which propertics this
individual has which that onc doesn't,  We may of course have o know the munber of
individuals with a certain property (as in the case of cardinal dets) butit doesn’t matter which
individuals they are. And we may have to assess the proportion of individuals with p that
have . as with dets such as all, most, 1wo-thirds of the, ete., but again it doesn't matter which
ol the individuals with p have q as long as the proportion is satisfied.

Maore formally then we may define a function from P into P* to be fogical just in case it
remains invariant under permuotations of individuals. Vhe formal statement of this definition
is sumewhat more “remote™ than in the case of cardinal functions and space will not permit
the length of discussion necessary to justify that the definition captures the intuition sketched
abave. The reader not concerned with the formal details may omit the formal definition (at
least on first pass) noting only that we have found a property which descriminates the
passible denotations of (pretheoreticatly Judged) logical dets from non-fogical ones. We may
note further here that all cardinal functions are logical on the proposed definition, but the
converse fails,  Ep. dets like every, most, all but mwo denote io 106Gy but not in CARD,,
Finally, we note that the definition of logical is not specific to det denotations bt applics to
the denotation set assaciated with any category. So it makes sense to ask what are the logical
clements among CNP denotations? among two place predicate denotations? cte. And in the
lust section of this paper we compare, with interesting results, the nature of logical clements
among Det denotations with those of many other categorics.

Defining “logical™: A permutation of the individuals of a model is just a one-to-one
function from the sct of individuals onto itsell. We shall refer to such functions a as basic
antomorphisms. ach basic atomorphism extends in a (mathematically) natral waty to an
automotphisin on any denotation set for any category.  (Here “automorphism® is used
non-trivially: the denotation sets in question normally have a rich boolean structure, and the
extension of a basic awtomorphism is indeed a one-to-one function from the denotation set
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onto itself which preserves that boolean structure)) The extension proceeds along the
fullowing lines: first, il a has been extended to an automorphism on a set K then for each
SCK. set d(S) = {«fs):s€ S} This extends a to an automorphism on the power set of K.2
Similarly if @ has been extended to an automorphism on sets B and 1 then we extend it to an
anomarphisin on the set of functivns from Binto 1) as follows: for cach such function f, alf)
is that function from Binto 1) w!\ich sends each a(b) to a((b)). And we may now define:

Def5: Anclement d of any denotation sct is automorphism invariant ifF for all basic
automorphisms a, a{d)=d

We now define 10Gy to be the set of those functions in CoNsy which are automorphism
invariant. 106 denotes the set of those functions in 10Gy for some k. And an clement of
Diety is fogical it it always denotes in 1.0Gy.

We note further that in all models, CARDy is a proper subsct of 1.0Gy, and in all but the
modet with just one individual, LOGy is a proper subsct of CONSy.

4. Questions of Fxpressive Power

(3) a. Suppose that English dets could take their denotations frcely in the sctof
functions from 1 into P*. Is there any significant sense in which we could say
more than we currently can?

b. Suppose that English had no non-logical dets. Would we suffer a significant loss
of expressive power? g, can we always mimic the effect of possesive dets (John's,
every siudent’s, eic.). however ad hocly, with logical dets?

¢ Can anything we can say using the full class of logical dets be paraphrased
(however ad hocly) using only cardinal dets?

(=5

- Does allowing k> 1 place dets increase expressive power? g can we in any
interesting sense say more with 10G; dets than with 106 dets?

¢. Can we account for why there scem to be so many logical dets and so few logical
expressions among most othercategories, c.g. the place predicates (vr's)?

(Query (3e) arises in a natural way from the answers to (3a-d)).

To answer these questions we need a “significant” measure of the cxpressive power of
the different classes of dets in question. Trivially for example if we had no non-fogical dets in
Englishe we would lose the ahility (o denote conservative functions which were not
avtomorphism invariant. But this loss hardly seems significant. We are not primarily
interested in which functions from PX into P* we can name. Rather we think of the role of
dets as being inherently ancilliny—their “purpose” is to allow us to refer to sets of propertics
in terms of propedtics, A reduction in the class of dets of Lnglish then may be deemed
significant if it results in a loss of scts namecable by Np's of the form Det+CNe, ‘To make this
notion precise:



Def6:  For QTP and H any sct of functions whose range is included in P*, we say that
Q is H-expressible iff for some he€ 1T and some x in the domain of h, Q=h(x).
We let Eyy denote the family of H-expressible sets.

Note: the clements of Iy vary with the choice of P,

Now the classes 1 of interest here are of course CARD, 1L.OG, CONS, and for every k,
CARDy, 10Gy, and CONSy. And for I} and K any of these classes we may compaic their
expressive power by comparing Ejpand Eg. Unfortunately the results of the comparison
sometimes depend on the choice of PP, For example in a model with only onc individual the
106G -expressible scts are the same as the CONS;-expressible sets, wherceas this identity fails in
all models with maore than onc individual. To climinate this dependency we define:

Def7: For H and K any of our classcs of interest, we write EpyCEg iff (i) and (ii)
helow hold:

(i) foralt P, Eyyis a subset of 1ig

(i1} for P sufficiently large, Vyy is a proper subset of Fy. (To say that s
sufficiently large is to say that for that P and all lmger P, gy is a proper
subsct of lig.)

We now answer our questions of interest:

Theorem 3: (o) Fearny C 1y 06, € Feons, and

(h) fUI' il" I)~ F('()NS[ = l"

Thearem-3b answers query (3a) in the negative. Tor any P and any subset Q of P there is a
one place conservative function f and a property s such that Q = {{s). (We may in fact
chouse s to he the trivial property 1, the propetty which alt individuals have). So restricting
dets to conservative functions does not principle restrict the scts we can refer to with full
NP's,

Theorem-3a answers queries (3b) and 3c) in the affirmative for the case k=1, Theotem
4 betow shows that that result generalizes in a nice level by level way:

Theorem 4: () forall k, ':('A'“)k C ':'l Oy C l:('()NSk
() Yearn C Erog C Yicons
We should note here that the cxamples of property scts which show that the inclusions
above are proper are in practice expressible. For example, let g be an infinite property (one

hid by aninfinite number of individuals, such as c.g. the property of being an cven number).
Then the set every () is not in L y and hence not in E¢apyy for any k. Since ever
CARL CARDY y

denotes in 1OG), that set is in Iy 0Gy. Thus the expressive contribution of every cannot he
mimicked by any cardinal dets, however ad hucly, since there are sets such as cvery(q) above
which are not equal to f18) for any k-tuple of properties § and any k-place cardinal function £,
Similarly we can show that among the aceeptable interpretations of some person’s one or
more things are sets notin ) o; and henee not in ) oGy forany ko thing can be interpreted

as the trivial property 1. 'the algebra P however must be infinite and the possessor property
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is infinite in our example and probably necessarily. We note that for any P, every finite set of
propertics is in Ly ¢, whenee il ' is finite then every set of properties is in Epg.

Query (3d) is mostly answered by Theoremn 5 below:

Theorem 5 (8) Fearny, C Ecarnyg . fork=1.2 and probably all k
M Frogy, C Frogy , - allk
(©) Feonsy = Econsy = P, allk, all P

For example, we can show that for certain pairs of propertics (p.q) the value of more...than...
at that pair # {ls), any property s, any f& CARDy. So with respect to cardinal and more
generally Togical dets the addition of k> 1 place dets docs increase expressive power, But this
is not the case for the futt class of conservative functions. Afl scts are CONS) expressible so in
principle we coutd not express more sets with CONS; functions. In practice however things
might be otherwise. For while it is true that for any sct Q of propertics there is a f€ CONSy
such that T1)= Q. we have no general way to construct a determiner expression (however
complex) in English which could be interpreted as this f. Morcover there appear to be
scrions constraints on the ficedom with which we may interpret dets (of any degree). K&S
prove an inctfability result concerning v which suggests that the size of the denotation set
for D11 prows faster thim the freedom with which we may interpret complex dets. More
fimportant for owr purposes here, there are severe constraints on the interpretation of
syntactically simple dets (mostly they denote increasing, automaorphism invariant functions)
and henee of the sets we can express with them. As a category then, Det provides many
logical expressions and constraing the denotations of its lexically simple oncs.  Below we
compare Detwith other categories in these (and other) respects:

Catepory C Size of D¢ No. of Al clements I.ex Free? Free?
large ety 2" 20 H)n +2)72 no o
cats NP 2" 2l no ?
AP ! n no Tyes
small 1y m 25 yes yes
cats Py 7.") 22 ycs ycs
" n 2 ycs ycs
CNP pAL 2 ycs ycs
APubys PAL 2 yes yes
NPyrop n 0 ycs yes
B (=1 2 2 n.a. yes
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Space docs not permit a serious discussion of the entries in the table. By way of minimal
explanation of the entries we notel n is the number of individuals of the mode! and is
assumed finite. Py is the category of 3-place predicate (ditransitive verb phrases); Py and Py
are understood analogously. AP is adjective phrase, and APghs is absolute adjective phrase, a
subcategory of AP which includes c.g. male but not tall—so those AP's which actually
determine propetrties. NPyeop 1S the subcategory of proper NP's,

A category C is called free iff for every model, any clement d& Dc is denotable, that s,
there is an cxpression ¢ in category C such that for some interpretation m of the language,
micj=d. C is catled lexically free il the element in question can always be chosen from
amang the lexical expressions of category C.

I arge categorics arc oncs the size of whose denotation scts is a hyperexponential function
of the size of the universe of individuals, That is, the size of the denotation sct increases as an
exponential function of n. For small categories on the other hand the size of the denotation
sct incrcases mercty as an exponential of a polynomial in n, or less.

We may now summnicrize the major generalizations from the table:

(4) Small categorics are lexically free, large catcgorics are not.

(5) For targe categorics the number of automorphism invariant elements in D¢ (so the
number of possible denotations of logical constants of category C) increascs as an
exponential function of the size of the universe (and increases much faster for Dety

than any other laige category). For small categories the number of Al clements is
fixed and independent of the size of the universe,

So from (4) we note that categorics with large denotation scts constrain how lexical items in
the category may be interpreted. g lexical Ni's in general denote individuals (and perhaps
a handful of other sets, expressed by NE's such as everyone, smheone, clc.)

And from €5) we have a partial answer to query (3c): No matter how big the universe
there are only two distinet possible denotations for logical expressions of category Py (verh
phrase). ‘They are basically the denotations of exist and not exist (extensionally). So English
canpot in principle provide more than two cxtensionalty distinet togical expressions of
category P, 1t can however provide infinitely many cxpressions of category ety and (inan
infinite universe) they can all denote differently,

Footnotes

* I'he authors would like to thank the Max-Planck-Institut fir Psycholinguistik for
support during the writing up of this paper.

|3
1. We may then show that f; Pk—P* is conservative iff pE M@ ilf pA vV \ g€ Al
=

‘I'his characterization of conservativity is comparable to the one orginally given for one place
functions.

2. We use the same symbol a for the basic automorphism and its various extensions.
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